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Figure 1: DRAPE is a learned model of clothing that allows 3D human bodies of any shape to be dressed in any pose. Realistic clothing
shape variation is obtained without physical simulation and dressing any body is completely automatic at run time.

Abstract

We describe a complete system for animating realistic clothing
on synthetic bodies of any shape and pose without manual inter-
vention. The key component of the method is a model of cloth-
ing called DRAPE (DRessing Any PErson) that is learned from a
physics-based simulation of clothing on bodies of different shapes
and poses. The DRAPE model has the desirable property of “fac-
toring” clothing deformations due to body shape from those due
to pose variation. This factorization provides an approximation to
the physical clothing deformation and greatly simplifies clothing
synthesis. Given a parameterized model of the human body with
known shape and pose parameters, we describe an algorithm that
dresses the body with a garment that is customized to fit and pos-
sesses realistic wrinkles. DRAPE can be used to dress static bodies
or animated sequences with a learned model of the cloth dynamics.
Since the method is fully automated, it is appropriate for dressing
large numbers of virtual characters of varying shape. The method
is significantly more efficient than physical simulation.
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1 Introduction

Clothed virtual characters in varied sizes and shapes are necessary
for film, gaming, and on-line fashion applications. Dressing such
characters is a significant bottleneck, requiring manual effort to de-
sign clothing, position it on the body, and simulate its physical de-
formation. DRAPE handles the problem of automatically dressing
realistic human body shapes in clothing that fits, drapes realistically,
and moves naturally. Recent work models clothing shape and dy-
namics [de Aguiar et al. 2010; Feng et al. 2010; Wang et al. 2010]
but has not focused on the problem of fitting clothes to different
body shapes.

Physics Based Simulation (PBS) [Baraff and Witkin 1998; Choi and
Ko 2002; Bridson et al. 2002] is widely used to model the complex
behavior of cloth and can produce highly realistic clothing simu-
lations. An extensive survey of cloth simulation can be found in
[Choi and Ko 2005]. PBS, however, is computationally expensive
[de Aguiar et al. 2010; Choi and Ko 2005] and the results are spe-
cific to a particular body model. Dressing bodies of different shapes
requires a separate simulation for every body shape. Additionally,
a fundamental problem confronting garment designers is the non-
trivial task of choosing clothing sizes and initializing clothing sim-
ulation on 3D characters [Choi and Ko 2005].

Our method learns a deformable clothing model that automatically
adapts to new bodies. Once the DRAPE model is learned for a par-
ticular type of clothing, we can dress any body in that clothing. Un-
like the PBS methods, users do not need to choose proper sizes and
initial positions of cloth pieces before clothing fitting. The model
will reshape the garment to fit the body and “drape” it automatically.
Pattern design is completely separated from the process of dressing
bodies and can be done by professional pattern makers before train-
ing the model. Therefore, users do not need to know about pattern
design, enabling much broader applications of clothing animation.

Here we use SCAPE [Anguelov et al. 2005] to represent human
bodies of different shapes in different poses. We learn separate
SCAPE models for men and women using approximately 2000
aligned laser range scans of different people in a single pose [Robi-
nette et al. 2002] and additional scans of one individual in roughly
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Figure 2: Overview. We dress the bodies in the shape and pose
training sets using PBS to generate clothing examples for learning.
DRAPE factors rigid pose, pose-independent shape variation, and
pose-dependent wrinkle deformation. The SCAPE model is used
to represent the underlying naked body. Given an input body, an
appropriate clothing configuration is generated according to the
body pose and shape. The clothing fitting process eliminates cloth-
body interpenetration to create realistic animations.

70 poses. This results is an expressive 3D model with parameters
controlling a wide range of body shapes (~β) and poses (~θ).

For this study, we designed and graded patterns for five common
clothing types: T-shirts, shorts, skirts, long sleeved shirts, and long
pants [Beazley and Bond 2003]. The complete system (Figure 2)
has three components:

1. Training data: The shape training set consists of SCAPE bodies
with different shapes in the same pose. The pose training set con-
tains a single body shape moving through sequences of poses. For
each training body shape, we manually choose a size for each gar-
ment and dress the body using PBS (Figure 2, row 2); this becomes
our training data.

2. Learned clothing deformation model: For each garment, we
learn a factored clothing model that represents: i) rigid rotation, ~θc,
of cloth pieces, e.g. the rotation of a sleeve w. r. t. the torso; ii) pose-
independent clothing shape variations, ~φ, that are linearly predicted
from the underlying body shape, ~β, (learned from the shape training
set); and iii) pose-dependent non-rigid deformations, ~ψ, that are
linearly predicted from a short history of body poses and clothing

shapes (learned from the pose training set).

3. Virtual fitting: First, we map body shape parameters, ~β, to
clothing shape parameters, ~φ, to obtain a custom shaped garment
for a given body. Clothing parts are associated with body parts
and the pose of the body is applied to the garment parts by rigid
rotation. The learned model of pose-dependent wrinkles is then ap-
plied. The custom garment is automatically aligned with the body
and interpenetration between the garment and the body is removed
by efficiently solving a system of linear equations.

Our model factors the change of clothing shape due to rigid limb ro-
tation, pose-independent body shape, and pose-dependent deforma-
tions. As with the original SCAPE model, this allows us to combine
deformations induced by different causes. The factored model can
be learned from far less data than a model that simultaneously mod-
els clothing shape based on pose and body shape. In contrast, train-
ing a non-factored model (with pose, shape, and pose-dependent
shape intermingled) would require a huge training set with many
body shapes performing many motions. The factored model is an
approximation that is sufficient for many applications and separates
modeling body shape from pose-dependent shape. The method is
ideal for applications where the body shape is not known in ad-
vance such as on-line virtual clothing try-on where every user has a
unique 3D shape or where many different people must be animated
(e.g. crowd scenes).

In summary, DRAPE makes the following contributions: 1) Syn-
thetic bodies of any shape are automatically dressed in any pose. 2)
A factored model of clothing shape models pose-dependent wrin-
kles separately from body shape. 3) The method dresses bodies
completely automatically at run time. 4) Interpenetration is effi-
ciently handled by solving a linear system of equations.

2 Related Work

Clothing simulation has many applications and no single technique
will be appropriate for all of them. Here, we focus on full automa-
tion and reasonable realism for applications in gaming, virtual fash-
ion, on-line retail clothing, computer vision, etc. We do not address
high-quality, custom, or labor- and compute-intensive simulation.

Cloth Simulation. The extensive literature on cloth simulation
focuses on modeling the physical properties of cloth and devel-
oping stable methods that can deal with cloth collisions, friction,
and wrinkle buckling [Baraff and Witkin 1998; Bridson et al. 2002;
Bridson et al. 2003; Choi and Ko 2002; Goldenthal et al. 2007]; see
[Choi and Ko 2005; House and Breen 2000; Nealen et al. 2006] for
surveys. These methods produce realistic simulations, but at high
computational cost. Games and retail clothing applications, how-
ever, require efficient solutions because of their interactive nature.
Efficient approaches include the Verlet integration scheme [Jakob-
sen 2001] and GPU acceleration [Bordes et al. 2009].

Cloth Capture. Structured light, stereo, optical flow, special pat-
terns and multi-camera systems can be used to capture cloth under-
going natural motion [de Aguiar et al. 2008; Bradley et al. 2008;
Pritchard and Heidrich 2003; Scholz et al. 2005; Stark and Hilton
2007; White et al. 2007]. These techniques do not immediately
provide a way to re-purpose the garments to new sizes and poses
but could be used to provide training data to a method like ours.
There has been recent interest in using such real cloth motions to
learn models of cloth deformation and, in particular, wrinkles [Popa
et al. 2009; Cordier and Magnenat-Thalmann 2005]. For training,
DRAPE requires aligned clothing meshes of different sizes; these
are difficult to obtain from scanned garments. Instead, we simulate
training clothing using PBS, giving a known alignment between all
training instances (cf. [Wang et al. 2010]).



From 2D Patterns to 3D Fitting. Choi and Ko [2005] summarize
the major challenges in cloth simulation and the “non-intuitive task
of clothing a 3D character with a garment constructed from 2D pat-
terns”. There has been relatively little work to address this issue.
Cordier et al. [2003] describe a web application that allows users to
interactively adjust a 3D mannequin according to a shopper’s body
measurements and then resize and fit a garment to the body. De-
caudin et al. [2006] describe a system in which the users draw 2D
sketches of contours and lines on a virtual mannequin, and then the
system converts these to 3D surfaces. Umetani et al. [2011] propose
an interactive tool for bidirectional editing between a 2D clothing
pattern and a 3D draped form. Our approach is different in that all
our effort is up front; once a garment is designed, we automate the
process of converting it to an infinitely resizable 3D model. Fitting
to a new body is then fully automated.

Modeling Wrinkles. Wrinkles are important for producing realis-
tic visual effects, therefore numerous wrinkle generation algorithms
have been proposed. One class of methods deforms and blends
wrinkles drawn on top of a smooth garment in a set of static poses
to synthesize wrinkles as the garment deforms [Hadap et al. 1999;
Cutler et al. 2007]. Another approach separates the coarse cloth-
ing shape from the fine wrinkle details [Cordier and Magnenat-
Thalmann 2002; Cordier and Magnenat-Thalmann 2005; Müller
and Chentanez 2010; Feng et al. 2010; Wang et al. 2010; Rohmer
et al. 2010; Kavan et al. 2011]. The coarse shape is obtained by run-
ning PBS on a low-resolution version of the mesh. Appropriate fine
wrinkles are synthesized using example- or learning-based meth-
ods. Our approach shares ideas with these methods but goes beyond
previous work to address how wrinkles vary with body shape.

Clothing in Reduced Space. Instead of dealing with the mesh at
the triangle level, related work models complex deformations in a
lower-dimensional linear subspace [de Aguiar et al. 2010; James
and Twigg 2005; Kavan et al. 2010]. This achieves a huge speed
up but with reduced realism. These subspace methods replace cloth
simulation with a learned dynamical system, where the input is a
3D body and its motion, and the output is a clothing mesh. Cloth-
ing pose and shape are integrated in such models and no separate
control is provided. We take a similar, learning-based, approach but
extend this idea to include wrinkles that also depend on body shape.
The idea of modeling clothing as a low-dimensional deformation is
also explored in [Guan et al. 2010]. The authors learn an “eigen
clothing” model that describes how clothing deviates from the body
as a function of body shape and pose. That work, however, only ad-
dresses the case of bodies and clothing in 2D. Kim and Vendrovsky
[2008] use the underlying human pose to drive the deformation of
clothing. Linear interpolation is used to compute the deformation
of clothing for an unseen body pose using clothing examples from
a database of pre-computed body-clothing pairs. Our method also
uses the underlying body to drive clothing deformation, however,
we go beyond their work to additionally drive clothing deformation
based on body shape.

3 Simulating Clothing for Training

Learning a DRAPE model requires a shape training set of clothing
meshes fit to different body shapes and a pose training set with a
single template body in multiple poses. To prepare the training sets,
we created 2D graded patterns for T-shirts, shorts, long-sleeved
shirts, long pants, and skirts using a commercial design and 3D
simulation software (OptiTex International, Israel). Without loss of
generality we will use a T-shirt to illustrate the procedures for data
generation. Figure 3 illustrates this standard commercial design
process while Figure 4 shows examples of the training garments.

A garment is defined in 2D by a number of “grading points”(purple

Figure 3: Pattern design. This screen-shot from a commercial pat-
tern design software system (OptiTex) shows graded patterns for the
T-shirt and shorts, with the grade points highlighted as purple dots.
Some pieces, such as the sleeves, may be reused for both left and
right sides. The center panel controls the parameters of the cloth
simulation. On the left, the initial cloth placement is shown with the
blue lines indicating the points to be stitched during simulation.

points in Figure 3), which model different sizes [Beazley and Bond
2003]. Different sizes of the same garment are not simply scaled
versions of each other. Simulation of the garment first requires
manually selecting the appropriate size pattern and positioning the
clothing pieces in 3D. PBS is done here with OptiTex, but any sim-
ulation method could be used. Note, we select one 2D size as the
template pattern and align all other 2D sizes to this with the help
of the grading points. After 2D alignment, all 3D meshes for each
type of clothing are in full correspondence.

The training set for pose-dependent clothing deformation uses a sin-
gle male and a single female avatar represented as SCAPE body
models [Anguelov et al. 2005]; we use the average male and av-
erage female body shapes in the North American CAESAR data
set [Robinette et al. 2002]. Using 23 different motion capture se-
quences we animate the SCAPE avatars and use OptiTex to simu-
late the clothing in each frame (Figure 4 (middle)). These motion
sequences capture a wide range of body poses and include walking,
running, jumping, kicking, turning, bending the legs, and so on. For
each sequence we simulate different clothing types: T-shirt, shorts,
and skirt for the female and T-shirt, shorts, long sleeves, and long
pants for the male. The clothing pose training sets consist of more
than 3500 different poses with 4 male garments and 3 female gar-
ments, for a total of 3500 × 7 = 24, 500 clothing instances. The
model for each clothing type is learned separately. The learned
DRAPE model is able to combine upper and lower-body clothing
models to produce combinations not seen in training.

Finally, for the shape training sets, we used the SCAPE body model
to generate 60 males and 60 females that span a wide variety of
body shapes. Each body is in the same canonical “template” pose
shown in Figure 4 (bottom). Similar to the pose training set, we
simulated 4 male garments and 3 female garments resulting in 60×
7 = 420 clothing instances in the shape training set.

4 DRAPE Model

DRAPE is trained using a set of aligned 3D clothing meshes, with
T triangles and V vertices. The set contains a template mesh X , a
set of pose examples Y ∈ P, and a set of shape example meshes
Y ∈ S. X is obtained by dressing an average body in the template
pose. Y ∈ P are obtained by running clothing simulation on one
animated body. Y ∈ S are obtained by running clothing simulation



Figure 4: Examples of training data. (top) Clothing types used
here (T-shirt, shorts, long-sleeved shirt, long pants, and skirt).
(middle) Example T-shirts in the pose training set generated from
a representative motion sequence. (bottom) Training examples of
T-shirts on representative male and female body shapes.

on different bodies with the same pose as the template. We consider
males and females separately.

Since factorization is a crucial property of the model, we use shape
deformation gradients [Sumner and Popović 2004; Anguelov et al.
2005] to represent deformations between meshes. This allows
DRAPE to separate deformations induced by pose and shape and
then combine the deformations together. We follow the formula-
tion of SCAPE and present the notation here as it will be needed
later. We refer the reader to the above referenced papers for details.

Deformation gradients are linear transformations that align corre-
sponding triangles between a source mesh X and target mesh Y
with the same topology. Suppose the vertices of a given triangle t
in X are (~xt,1, ~xt,2, ~xt,3) and the corresponding triangle in Y has
the vertices (~yt,1, ~yt,2, ~yt,3). We solve for a 3 by 3 linear transfor-
mation At such that

At[∆~xt,2,∆~xt,3,∆~xt,4] = [∆~yt,2,∆~yt,3,∆~yt,4], (1)

where ∆~xt,k = ~xt,k − ~xt,1 for k = 2, 3 and ∆~xt,4 = ∆~xt,2 ×
∆~xt,3. Since At is applied to edge vectors, it is translation invari-
ant; it encodes the scale, orientation, and skew of triangle t. Fol-
lowing [Sumner and Popović 2004] the virtual edge, ∆~xt,4, makes
the problem well constrained so that we can solve for At.

The key idea of a factored model is that it expresses the deforma-
tions, At, as a series of linear transformations, each corresponding
to different aspects of the model. We factorAt into pose-dependent
deformation, rigid part rotation, and body shape deformation:

At = QtRp(t)Dt. (2)

Dt represents variations in clothing shape on different people and
is triangle specific. Rp(t) is the rigid rotation applied to clothing
part p containing triangle t. Qt is the triangle-specific non-rigid

pose-dependent deformation of the garment. This pose-dependent
term captures wrinkles resulting from bending and twisting. The
order of the factoring matters. Dt is learned from a shape training
set where all the bodies are in a template pose, thus Dt is applied
first, when clothing is still in the template pose. We then rotate
each of the parts and finally apply wrinkle deformations on top of
the previous deformations.

DRAPE models different clothing meshes by applying different
transformations Dt, Rp(t), and Qt to the template mesh. The de-
formations, however, are applied to triangles independently and do
not guarantee a consistent mesh. Reconstructing the final mesh in-
volves solving for the vertex coordinates, ~yi ∈ Y , that best match
the deformed triangles in a least squares sense

argmin
~y1,...,~yV

T∑
t=1

∑
k=2,3

||QtRp(t)Dt∆~xt,k −∆~yt,k||2. (3)

Figure 5 illustrates each of the DRAPE deformations applied in or-
der. Below we describe them in detail and, in particular, how we
learn Qt and Dt.

4.1 Deformations Due to Body Shape

The shape deformations Dt are learned from X and S. Recall that
the examples in S have the same pose as X . We solve for the At’s
for each pair of X and Yj ∈ S using Equation (1). These deforma-
tions are induced by changes in clothing shape that result only from
the clothing being draped over different body shapes, so QtRp(t)

in Equation (2) is the identity and, for a given mesh Yj ∈ S, we
can write Aj

t = Dj
t . The clothing shape deformations Dj

t for all
triangles t = 1 . . . T are concatenated into a single column vector
~dj ∈ R3·3·T×1. These are collected into a matrix of deformations
S = [..., ~dj , ...]. Principal component analysis (PCA) is used to
find a low dimensional subspace, such that ~dj can be approximated
by Ud

~φj + ~µd, where Ud is a matrix of the first few principal com-
ponents of the shape deformation space, and ~µd represents the mean
deformation from the template X . Figure 6 illustrates the mean and
first three principal components for a female T-shirt.

A new clothing shape is represented by a new set of shape coeffi-
cients ~φ∗. These define the shape deformation from the template,
~d∗ = Ud

~φ∗ + ~µd. This is converted into the appropriate 3 × 3
deformation matrices, D∗t , which are applied to the template as il-
lustrated in Figure 5.

The key idea behind automatically dressing a new body is that we
can predict the clothing shape parameters, ~φ∗, from a SCAPE body
with shape parameters, ~β (refer to Figure 2). Given 60 body and
clothing training pairs in S, we learn a linear mapping,W , between
these vectors using L2-regularized least squares with the weight of
the regularized term being 0.2. We then predict clothing parameters
for an input body shape ~β using the linear equation

~φ∗ = W ·
[
~β
1

]
. (4)

Since clothing shape deformations are a function of body shape,
we write D̂t(~β) to represent the deformation matrix for a triangle
t predicted from the body shape given by ~β. In our work, ~β is 20

dimensional and ~φ∗ has only 5 dimensions because we expect the
shape model to only contain low frequency deformations.



Figure 5: DRAPE clothing deformation process. (1) The template mesh is deformed to fit a new body shape. (2) The pose of the underlying
body is used to apply a rotation to clothing parts. (3) Pose-dependent non-rigid deformation produces wrinkles learned from examples. (4)
Vertices are moved locally to remove interpenetration with the underlying body mesh.

(a) Mean (b) PC1 (c) PC2 (d) PC3

Figure 6: Shape model. Deviations from the template shape: (a) template deformed by the mean deformation to create a “mean template”;
(b-d) mean template deformed along the first three principal component directions ( ± 3 standard deviations).

Figure 7: Color-coded body and clothing. The colors show the
part correspondences between bodies and clothing. During train-
ing, the rigid rotation for each clothing part is the same as the ro-
tation for the corresponding body part. This allows us to transfer a
new body pose to the clothing during clothing fitting.

4.2 Deformations Due to Rigid Part Rotation

The SCAPE body model is composed of parts, which are color
coded in Figure 7. Clothing is also naturally composed of parts
during its design or can be easily segmented into parts. Each cloth-
ing part is associated with a single body part as shown by the color
coding in Figure 7. The part correspondences for each garment are
defined manually as part of the pattern creation process.

The SCAPE pose is given by the parameters ~θ (refer to Figure 2);
these are relative part rotations along a kinematic tree rooted at the
pelvis. These parameters represent rigid 3×3 rotation matrices,Rp

for each part p; these are applied to all the triangles in the respective
body part. The DRAPE model simply applies these rotations to the

Figure 8: Learned pose-dependent deformation model. For
each pair, the left piece of clothing shows the physically-simulated
example from the pose training set, and the right piece shows the
synthesized deformation patterns predicted by our model.

corresponding clothing part as defined in Figure 7. For a given
garment, all the part rotation parameters relevant to that garment
are collected into a clothing pose vector ~θc. The part-based rotation
for a clothing mesh triangle is denoted as Rp(t)(~θc).

4.3 Deformations Due to Body Pose

We use the pose training set P to learn a non-rigid pose-dependent
clothing deformation model; this captures effects such as wrinkles.
Since every Yi ∈ P corresponds to the same SCAPE body shape,
all clothing deformations result from pose changes. This means Dt

is the identity in Equation (2) and we write the deformations for
each mesh Yi and each triangle as Ai

t = Qi
tRp(t)(~θ

i
c), where Qi

t is
the residual triangle deformation after accounting for the part-based
rigid rotation Rp(t)(~θ

i
c) given by the training body pose. Since all

the clothing meshes in P are in correspondence, it is trivial to solve
for Ai

t and consequently the non-rigid deformations, Qi
t.

As with the shape deformation model, the clothing pose deforma-
tions,Qi

t, for all the triangles are concatenated into a single column
vector, ~q i ∈ R3·3·T×1. We collect every example Yi in P to form a
matrix P = [..., ~q i, ...]. We use PCA to represent a dimensionality-
reduced subspace of pose deformation and ~q i is approximated by



Uq
~ψi+~µq . Depending on the complexity of the clothing type, ~ψi is

chosen to have 30− 50 dimensions capturing 90% of the variance.

While PCA captures the space of possible deformations, to an-
imate clothing we must relate these deformations to body pose.
Cloth exhibits complex dynamical phenomenon w.r.t. the move-
ment of underlying human body. To realistically capture how cloth
moves and wrinkles, we learn a second order dynamics model for
pose-dependent wrinkle deformation using the method described
in [de Aguiar et al. 2010]; refer to that paper for a detailed ex-
planation. The second-order model is important to capture smooth
wrinkle transitions with pose variation and fine wrinkle details.

As an example, consider the T-shirt, where ~θc contains three relative
part rotations: torso w. r. t. the pelvis, left upper arm w. r. t. the torso,
and right upper arm w. r. t. the torso. Each of the part rotations
are represented by a 3 × 1 Rodrigues vector. Therefore, ~θc is 9
dimensional in this case.

The key idea is to write the pose deformation coefficients , ~ψf , of
the current frame, f , as a function of the pose, history of pose-
dependent deformations, and body state changes; i.e. ~ψf =

M1
~θfc +M2

~ψf−1 +M3
~ψf−2 +M4~z

f,f−2 +M5~z
f−1,f−2, (5)

where M1..M5 are the matrices of the dynamics coefficients to be
learned, ~θfc is a vector of the relevant clothing part rotations at frame
f , ~ψf−1 and ~ψf−2 are the previous two frames of pose deforma-

tion coefficients. ~zj,k =

[
Γk−1 · (~τ j − ~τk)

~θjc − ~θkc

]
encodes the relative

body translation (normalized by the global rotation at frame k) and
rotation change of frame j with respect to frame k, where Γk is
the global (i. e., pelvis) rotation of the body at frame k, ~τ j and ~τk

are the global translations of the body. We normalize the position
change between two frames so that the model generalizes better to
unseen body movement directions. Note that ~θjc , ~θkc are relative part
rotations, so that they do not need to be normalized by Γk.

We learn a gender-specific dynamics model for each type of cloth-
ing. Given the training poses, P, the dynamics coefficientsM1..M5

are learned by solving the following least squares problem con-
structed from the pose training set:

argmin
M1,M2,M3,M4,M5

|P|∑
f=1

||~ψf −


MT

1

MT
2

MT
3

MT
4

MT
5


T 

~θfc
~ψf−1

~ψf−2

~zf,f−2

~zf−1,f2

 ||2. (6)

Once ~ψf for frame f is predicted from the learned dynamics model
using Equation (5), the concatenated pose-dependent deformations
will be ~q = Uq

~ψf+~µq . Again, this is converted into the appropriate
3× 3 deformation matrices. Let Q̂t(~ψ

f ) represent the deformation
matrix for a triangle t. We show in Figure 8 and the supplementary
video that our model produces visually plausible clothing wrinkles.

4.4 Predicting New Clothing

Putting everything together, we create a new instance of a garment
by solving for the vertex coordinates of Y such that

argmin
~y1,...,~yV

T∑
t=1

∑
k=2,3

||Q̂t(~ψ
f )Rp(t)(~θ

f
c )D̂t(~β)∆~xt,k −∆~yt,k||2.

(a) initial, after 1st iter, after 3rd iter (b)

Figure 9: Removing interpenetration. (a) The left, middle, and
right figures show the initial clothing prediction, the result after the
first iteration of optimization, and the final result respectively. (b)
Details of the interpenetration term. The blue dots and red dots
represent body and clothing vertices respectively (see text).

Computationally, the entire process described in this section in-
volves several matrix multiplications and the solution of a sparse
linear least squares problem.

5 Refining the Fit

Given a body shape and pose, DRAPE predicts a plausible cloth-
ing mesh. However, when the predicted clothing mesh is overlaid
on the body (Figure 9(a)), there can be interpenetration between the
clothing and the body. Consequently, the prediction step is followed
by an efficient refinement step that warps the garment so that it lies
entirely outside the body. This is achieved by minimizing a mea-
sure of cloth-body interpenetration with respect to the vertices of
the garment, regularizing to make the cloth deform plausibly. Our
iterative strategy alternates between computing the cloth vertices
that penetrate the body, P , and updating the clothing shape. The
objective function comprises the following terms:

Cloth-body interpenetration. Given a penetrating vertex on the
clothing in P , we compute the nearest vertex on the body and its
associated surface normal (Figure 9). We seek a clothing mesh such
that all such vertices are pushed outside the body mesh. To that end,
we define a penalty

pC(Y) =
∑

(i,j)∈C∧i∈P

||ε+ ~nT
~bj

(~yi −~bj)||2

where C is the set of correspondences between each clothing vertex,
~yi, and its closest body vertex, ~bj . Additionally ~n~bj is the normal

for body vertex ~bj . Penetration happens when ~nT
~bj

(~yi − ~bj) < 0,
otherwise not. The term ε = −0.3cm ensures that clothing vertices
lie sufficiently outside the body. This equation has many solutions.
To make the cloth deform plausibly, we regularize the solution with
two additional terms and one optional term:

Smooth warping. We prefer solutions where the warping of the
cloth vertices varies smoothly over the surface of the garment; i.e.
we seek to minimize

s(Y) =
∑
i∈V

||(~yi − ~̃yi)−
1

|Ni|
∑
j∈Ni

(~yj − ~̃yj)||2

where V is the set of vertices in the garment, ~y are vertices of the
warped garment, ~̃y are vertices of the garment before this iteration,
and Ni is the set of vertices adjacent to vertex i. This term prefers
a deformation of a vertex that is similar to the average deformation
of its neighbors.



Damping. We prefer solutions where the warped vertices keep their
original locations as much as possible; i.e. we seek to minimize

d(Y) =
∑
i∈V

||~yi − ~̃yi||2.

Tightness (optional). There are several clothing types such as
shorts, skirts, and long pants that have a waistband that needs to
be in contact with the body. The “tightness” term models this and
here we use it only for lower-body clothing:

tC(Y) =
∑

(i,j)∈C∧i∈T

||~yi −~bj ||2

where T is a set of vertices corresponding to the clothing waist
band as defined by the pattern designer. This term specifies that
every waist band vertex should be close to its nearest neighbor, ~bj ,
on the body. Note that this term could be used to model tight cuffs
or any clothing region that fits snugly to the body.

Our goal is to efficiently compute the mesh that minimizes

E(Y) = pC(Y) + λss(Y) + λdd(Y) + λttC(Y).

E(Y) is a sum of squares of linear functions of the vertices, so we
can find its solution efficiently using a linear least squares solver.
However, because we only consider the “currently penetrating” ver-
tices, P , we need to solve the least squares problem iteratively so
that we do not introduce new penetrating vertices that did not pen-
etrate previously. At each iteration, we update P , construct the
sparse least squares problem, solve it, and update the clothing mesh.
In our experiments we find that 3 iterations are sufficient to remove
most collisions. The entire collision handling step is:

Given a body and a clothing mesh, compute corresponding ver-
tices, C, and only do this once.
iter = 0
repeat
iter = iter + 1
Determine the penetration vertex set P .
Construct a linear system and solve:
argmin
~y1,...,~yV

{pC(Y) + λss(Y) + λdd(Y) + λttC(Y)}

until iter = 3

The weights decrease with iterations: λs = 4, 2, 1 and λd =
0.8, 0.6, 0.4. For lower clothing with tight waist bands λt = 0.2.

Details. The clothing deformation model is translation invariant,
so the three dimensional global translation of the garment must be
determined. Note that the global rotation is already defined by the
global rotation of the pelvis. During garment creation, we define
several anchor points on the garment and the roughly correspond-
ing points on the 3D body mesh. During fitting we compute the
translation by minimizing the difference between the clothing and
body anchor points.

To layer multiple pieces of clothing, we independently predict and
position all pieces then refine from the inside out. For example, we
predict the positions of pants and a T-shirt, refine the pants to be
outside the body, and then refine the T-shirt to be outside the com-
bined vertex set of the pants and body (here, the nearest neighbors C
are computed between the upper-clothing and the combined vertex
set). Combining the body and lower clothing is done efficiently by
segmenting the body at the waist vertices and taking the union of
the remaining upper body vertices and the lower clothing vertices.

6 Experimental Results

We evaluate the performance of the DRAPE model on different
clothing types, body shapes, and motion sequences.

Qualitative Evaluation. To illustrate the behavior of the model, we
synthesize clothing on 2 test sequences present in the pose training
set and 10 novel test sequences not present in the training set. For
each test motion sequence, we synthesize multiple bodies with dif-
ferent random shapes using the SCAPE body model. We then dress
these bodies with different combinations of upper and lower cloth-
ing types. Here, we use 20 body shape coefficients (~β ∈ R20×1),
5 clothing shape coefficients (~φ ∈ R5×1), and 50 pose-dependent
clothing deformation coefficients (~ψ ∈ R50×1). The choices of di-
mensions for ~β and ~φ are discussed later. Figures 1 and 10 and the
accompanying video illustrate that the method synthesizes cloth-
ing with detailed wrinkles and generalizes well to body shapes and
poses not present in the training set.

We also visually compare the results of our method (with and with-
out dynamics) to PBS. Figure 11 illustrates the results with two
poses: 1) a male model rotating his torso, and 2) a female model
in the middle of a jump. Figure 11 shows that the OptiTex simu-
lations (a) contain more high frequency wrinkles than our method
with dynamics (b). This is to be expected as our approach is an
approximation to the physically-simulated clothing used for train-
ing. However, the strength of our method is being able to produce
infinitely variable clothing sizes for different body shapes (Figure
12). Figure 11 (c) shows the results of our method without model-
ing dynamics; i. e., a zero order model that only uses ~θfc in Equation
(5) to predict pose-dependent deformation. Comparing Figure 11
(b) and (c), we see that modeling dynamics is important for main-
taining fine wrinkles, especially for fast motions.

Quantitative Evaluation. We take a male T-shirt as the represen-
tative clothing type for all quantitative experiments. The results are
similar for other clothing types.

First, we verify the assumption that the pose-dependent non-rigid
wrinkle deformations can be learned by linear regression. We ex-
pect the synthesized meshes produced by DRAPE to be smoother
than the ground truth PBS meshes because the linear model is an
approximation of the “real” wrinkle patterns. The effect of this
smoothing is shown in Figure 11 (d) for a representative 176 frame
test sequence (including running, jumping, and stopping) simulated
using OptiTex (blue) and animated by DRAPE with dynamics (red)
or DRAPE without dynamics (green). We compute the mean cur-
vature at each vertex and then take the mean of this over all vertices
in the garment; this provides an objective measure of the overall
amount of wrinkles in the cloth. The plot shows that 1) we lose
approximately 5 − 15% of the high frequency wrinkles due to the
linear regression approximation and 2) modeling dynamics greatly
helps to maintain fine wrinkles.

Second, we explore the performance of clothing shape prediction,
~φ, as a function of the dimensionality of the SCAPE body coef-
ficients ~β (refer to Equation (4)). We use the average Euclidean
vertex distance to measure shape prediction error. We use leave-
one-out cross validation to predict the ith clothing instance using
the PCA model and the linear shape predictor learned from all the
remaining 59 instances excluding i. Figure 13 shows average shape
prediction error over the 60 examples as a function of the dimen-
sionality of the SCAPE body shape coefficients ~β. If too many prin-
cipal components are used, the model tends to over-fit the wrinkles
and produce higher errors. The best generalization performance is
achieved with approximately 20 PCA dimensions; this might in-
crease with more shape training data. Thus, use use 20 body shape
parameters, ~β, in our experiments.

Speed and Memory. The run time performance for different gar-
ments and mesh resolutions is shown in Table 1. Our method is
implemented using Matlab (single threaded) without special opti-



Figure 10: More DRAPE results (test sequences not present in training set). We randomly combine upper clothing type, lower clothing
type, pose, and body shape to generate synthetically clothed people. See accompanying video for more results.

(a) OptiTex (b) DRAPE with dynamics (c) DRAPE without dynamics (d) Wrinkle comparison

Figure 11: Wrinkles. Comparison between OptiTex simulation on mean bodies (a) and the DRAPE model with (b) and without (c) dynamics
on novel bodies. (d) Measures how “wrinkled” the garment is in terms of the mean of the mean curvature. One test sequence with a motion
not appearing in the training set is shown (176 frames). The DRAPE model (with dynamics) captures the wrinkles well while the model
without dynamics over smooths the clothing.

Run time (sec/frame)
Mesh Res DRAPE OptiTex

Garment #Vert #Tri Syn Fit Total Single Animation
T 18903 37446 0.1 0.8 0.9 46 12.1
Sh 10028 19686 0.06 0.4 0.46 20 5.3
Sk 8933 17582 0.06 0.4 0.46 35 7.2
LS 17136 34026 0.1 0.7 0.8 75 17.9
LP 15980 31746 0.09 0.6 0.69 62 15.7

T+Sh 28931 57132 0.16 1.2 1.4 122 28.0
LS+LP 33116 65772 0.19 1.3 1.6 308 37.6

Table 1: Run time performance. Comparison of the run time
performance of our method and the OptiTex package for various
garments and resolutions. “T”, “Sh”, “Sk”, “LS”, “LP” stand
for T-shirt, Shorts, Skirt, Long Sleeves, Long Pants respectively.
“Syn” stands for clothing mesh synthesis while “Fit” represents the
time for solving body-cloth interpenetration and preparation time.
OptiTex-Single shows the run time for a single frame simulation
and OptiTex-Animation shows the amortized run time per frame in
an animation.

mization such as GPU acceleration. The OptiTex run time does not
include manually choosing the appropriate clothing size and plac-
ing the cloth pieces in appropriate initial positions.

For a single frame simulation, our method is much faster (40 −
160X) than the commercial physical simulation. If we run cloth
simulation on a motion sequence, the amortized run time per-frame
for OptiTex improves a lot, but is still around 15X slower than our
method. This is because OptiTex makes use of temporal coherence.

Our method fits clothing to each pose individually, therefore the
per-frame run time for an animation is the same as for a single pose.

All timings were obtained with a 32 bit desktop machine with a
3.2 GHz AMD PhenomTMΠ processor, 4.0 GB of memory, and an
NVIDIA GeForce 8600 GT video card. Our method is not mem-
ory intensive. Consider a clothing mesh with 25000 triangles and
a body model with 25000 triangles. Using floats for the vertices
and normals, we need 450KB in total for the body and clothing
to fit into memory. The shape PCA bases take 18MB (20 dimen-
sions). The pose PCA bases take 27MB (30 dimensions). Repre-
senting the linear systems for computing the clothing deformation
and clothing refinement takes approximately 400KB and 750KB
respectively. This easily fits in the memory of a smart phone.

In addition to the run-time cost, there is an up-front cost of cre-
ating the training set for learning. The garment design process is
completely standard and graded patterns like those used here exist
for any mass produced garment already. Preparing the shape train-
ing set involves dressing each of the 60 training bodies once using
the PBS system. The pose training set requires dressing the tem-
plate body and simulating the motion sequences. Once the training
data is created, learning the shape and pose-dependent models is
very fast (minutes). Our advantage can be summarized as “simu-
late once, use often.”

7 Limitations and Discussion

While DRAPE generates realistic clothing for different body shapes
and poses, it has several limitations. First, the learned shape and



Figure 12: Importance of fit. We compare bodies of different shapes clothed using DRAPE (left) and OptiTex simulation (right). The OptiTex
simulation uses a fixed size T-shirt, emphasizing how the quality of the simulation depends heavily on choosing the right sized garment. In
contrast, DRAPE automatically predict the appropriate, infinitely-sized, clothing for every body.

(a) 10-Dim (b) 20-Dim (c) 30-Dim (d) 40-Dim

Figure 13: Shape prediction accuracy versus subspace dimen-
sion. The shape prediction error (in cm) does not decrease mono-
tonically with the number of principal components. Over fitting
occurs with more than 20 dimensions. These errors are illustrated
on one of the ground truth clothing meshes, with hot/cold colors
representing large/small errors.

pose deformation models are independent and, when they are com-
posed during synthesis, unnatural wrinkle patterns may be gener-
ated. Here we do not claim a physically realistic model of wrin-
kles, but rather demonstrate that often the simple factored model
produces visually appealing results in practice. To minimize the
occurrence of unnatural combinations, while retaining realism, we
use a fairly smooth shape model and a higher frequency pose model
(cf. [Wang et al. 2010]). The lower frequency shape model is natu-
rally obtained by using fewer principal components for the clothing
shape coefficients ~φ. The assumption is that low frequency wrinkles
are related to body shape while high frequency wrinkles are largely
determined by the body motion. While DRAPE handles interpene-
tration between the body and the clothing and between upper cloth-
ing and lower clothing, it does not model cloth self-penetration in
the same clothing item.

It should be noted that the learned model is only as good as the
input it is trained from. As shown here, the model is an approx-
imation and DRAPE garments are smoother than the simulations.
Here we used a particular commercial package for simulation but
higher quality clothing simulations, or real cloth capture, would

produce a more realistic DRAPE model. While there is some loss
of fidelity compared with the training data, the advantages of the
method are that the fitting is automatic, the model generalizes to
different body shapes and it is computationally efficient. For many
applications, particularly involving dressing many unknown body
shapes, the trade off of automation for fidelity may be appropriate.

8 Conclusions and Future Work

DRAPE is a complete solution for dressing people in a variety of
shapes, poses, and clothing types. DRAPE is learned from stan-
dard 2D clothing designs simulated on 3D avatars with varying
shape and pose. Once learned, DRAPE adapts to different body
shapes and poses without the redesign of clothing patterns; this ef-
fectively creates infinitely-sized clothing. A key contribution is that
the method is automatic. In particular, animators do not need to
place the cloth pieces in appropriate positions to dress an avatar.

Future work will explore a wider range of garment and fabric types.
We will also learn models of “tucked in” clothing and more com-
plex garments with pleats, cuffs, collars, and closures (buttons and
zippers). Finally, clothing fit is not just about body shape but also
involves individual preference. By training the model with differ-
ent fit preferences (e.g. loose and tight) we should be able to add
a “comfort” axis to the PCA shape basis that can be independently
controlled.
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